(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
prod(0, X) → 0
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0) → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
prod(0', X) → 0'
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0') → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0'n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
prod(0', X) → 0'
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0') → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0'n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

Types:
fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
if :: true:false → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
zero :: n__0:n__s:n__p:n__fact:n__prod → true:false
n__s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__0 :: n__0:n__s:n__p:n__fact:n__prod
n__prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
add :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
0' :: n__0:n__s:n__p:n__fact:n__prod
s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
true :: true:false
activate :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
false :: true:false
p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
hole_n__0:n__s:n__p:n__fact:n__prod1_3 :: n__0:n__s:n__p:n__fact:n__prod
hole_true:false2_3 :: true:false
gen_n__0:n__s:n__p:n__fact:n__prod3_3 :: Nat → n__0:n__s:n__p:n__fact:n__prod

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
fact, add, prod, activate

They will be analysed ascendingly in the following order:
fact = activate
add < prod
prod < activate

(6) Obligation:

TRS:
Rules:
fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
prod(0', X) → 0'
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0') → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0'n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

Types:
fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
if :: true:false → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
zero :: n__0:n__s:n__p:n__fact:n__prod → true:false
n__s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__0 :: n__0:n__s:n__p:n__fact:n__prod
n__prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
add :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
0' :: n__0:n__s:n__p:n__fact:n__prod
s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
true :: true:false
activate :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
false :: true:false
p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
hole_n__0:n__s:n__p:n__fact:n__prod1_3 :: n__0:n__s:n__p:n__fact:n__prod
hole_true:false2_3 :: true:false
gen_n__0:n__s:n__p:n__fact:n__prod3_3 :: Nat → n__0:n__s:n__p:n__fact:n__prod

Generator Equations:
gen_n__0:n__s:n__p:n__fact:n__prod3_3(0) ⇔ n__0
gen_n__0:n__s:n__p:n__fact:n__prod3_3(+(x, 1)) ⇔ n__s(gen_n__0:n__s:n__p:n__fact:n__prod3_3(x))

The following defined symbols remain to be analysed:
add, fact, prod, activate

They will be analysed ascendingly in the following order:
fact = activate
add < prod
prod < activate

(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol add.

(8) Obligation:

TRS:
Rules:
fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
prod(0', X) → 0'
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0') → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0'n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

Types:
fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
if :: true:false → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
zero :: n__0:n__s:n__p:n__fact:n__prod → true:false
n__s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__0 :: n__0:n__s:n__p:n__fact:n__prod
n__prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
add :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
0' :: n__0:n__s:n__p:n__fact:n__prod
s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
true :: true:false
activate :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
false :: true:false
p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
hole_n__0:n__s:n__p:n__fact:n__prod1_3 :: n__0:n__s:n__p:n__fact:n__prod
hole_true:false2_3 :: true:false
gen_n__0:n__s:n__p:n__fact:n__prod3_3 :: Nat → n__0:n__s:n__p:n__fact:n__prod

Generator Equations:
gen_n__0:n__s:n__p:n__fact:n__prod3_3(0) ⇔ n__0
gen_n__0:n__s:n__p:n__fact:n__prod3_3(+(x, 1)) ⇔ n__s(gen_n__0:n__s:n__p:n__fact:n__prod3_3(x))

The following defined symbols remain to be analysed:
prod, fact, activate

They will be analysed ascendingly in the following order:
fact = activate
prod < activate

(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol prod.

(10) Obligation:

TRS:
Rules:
fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
prod(0', X) → 0'
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0') → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0'n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

Types:
fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
if :: true:false → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
zero :: n__0:n__s:n__p:n__fact:n__prod → true:false
n__s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__0 :: n__0:n__s:n__p:n__fact:n__prod
n__prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
add :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
0' :: n__0:n__s:n__p:n__fact:n__prod
s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
true :: true:false
activate :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
false :: true:false
p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
hole_n__0:n__s:n__p:n__fact:n__prod1_3 :: n__0:n__s:n__p:n__fact:n__prod
hole_true:false2_3 :: true:false
gen_n__0:n__s:n__p:n__fact:n__prod3_3 :: Nat → n__0:n__s:n__p:n__fact:n__prod

Generator Equations:
gen_n__0:n__s:n__p:n__fact:n__prod3_3(0) ⇔ n__0
gen_n__0:n__s:n__p:n__fact:n__prod3_3(+(x, 1)) ⇔ n__s(gen_n__0:n__s:n__p:n__fact:n__prod3_3(x))

The following defined symbols remain to be analysed:
activate, fact

They will be analysed ascendingly in the following order:
fact = activate

(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3)) → gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3), rt ∈ Ω(1 + n313)

Induction Base:
activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(0)) →RΩ(1)
gen_n__0:n__s:n__p:n__fact:n__prod3_3(0)

Induction Step:
activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(+(n31_3, 1))) →RΩ(1)
s(activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3))) →IH
s(gen_n__0:n__s:n__p:n__fact:n__prod3_3(c32_3)) →RΩ(1)
n__s(gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(12) Complex Obligation (BEST)

(13) Obligation:

TRS:
Rules:
fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
prod(0', X) → 0'
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0') → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0'n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

Types:
fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
if :: true:false → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
zero :: n__0:n__s:n__p:n__fact:n__prod → true:false
n__s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__0 :: n__0:n__s:n__p:n__fact:n__prod
n__prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
add :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
0' :: n__0:n__s:n__p:n__fact:n__prod
s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
true :: true:false
activate :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
false :: true:false
p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
hole_n__0:n__s:n__p:n__fact:n__prod1_3 :: n__0:n__s:n__p:n__fact:n__prod
hole_true:false2_3 :: true:false
gen_n__0:n__s:n__p:n__fact:n__prod3_3 :: Nat → n__0:n__s:n__p:n__fact:n__prod

Lemmas:
activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3)) → gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3), rt ∈ Ω(1 + n313)

Generator Equations:
gen_n__0:n__s:n__p:n__fact:n__prod3_3(0) ⇔ n__0
gen_n__0:n__s:n__p:n__fact:n__prod3_3(+(x, 1)) ⇔ n__s(gen_n__0:n__s:n__p:n__fact:n__prod3_3(x))

The following defined symbols remain to be analysed:
fact

They will be analysed ascendingly in the following order:
fact = activate

(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol fact.

(15) Obligation:

TRS:
Rules:
fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
prod(0', X) → 0'
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0') → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0'n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

Types:
fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
if :: true:false → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
zero :: n__0:n__s:n__p:n__fact:n__prod → true:false
n__s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__0 :: n__0:n__s:n__p:n__fact:n__prod
n__prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
add :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
0' :: n__0:n__s:n__p:n__fact:n__prod
s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
true :: true:false
activate :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
false :: true:false
p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
hole_n__0:n__s:n__p:n__fact:n__prod1_3 :: n__0:n__s:n__p:n__fact:n__prod
hole_true:false2_3 :: true:false
gen_n__0:n__s:n__p:n__fact:n__prod3_3 :: Nat → n__0:n__s:n__p:n__fact:n__prod

Lemmas:
activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3)) → gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3), rt ∈ Ω(1 + n313)

Generator Equations:
gen_n__0:n__s:n__p:n__fact:n__prod3_3(0) ⇔ n__0
gen_n__0:n__s:n__p:n__fact:n__prod3_3(+(x, 1)) ⇔ n__s(gen_n__0:n__s:n__p:n__fact:n__prod3_3(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3)) → gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3), rt ∈ Ω(1 + n313)

(17) BOUNDS(n^1, INF)

(18) Obligation:

TRS:
Rules:
fact(X) → if(zero(X), n__s(n__0), n__prod(X, n__fact(n__p(X))))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
prod(0', X) → 0'
prod(s(X), Y) → add(Y, prod(X, Y))
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
zero(0') → true
zero(s(X)) → false
p(s(X)) → X
s(X) → n__s(X)
0'n__0
prod(X1, X2) → n__prod(X1, X2)
fact(X) → n__fact(X)
p(X) → n__p(X)
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0'
activate(n__prod(X1, X2)) → prod(activate(X1), activate(X2))
activate(n__fact(X)) → fact(activate(X))
activate(n__p(X)) → p(activate(X))
activate(X) → X

Types:
fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
if :: true:false → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
zero :: n__0:n__s:n__p:n__fact:n__prod → true:false
n__s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__0 :: n__0:n__s:n__p:n__fact:n__prod
n__prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__fact :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
n__p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
add :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
0' :: n__0:n__s:n__p:n__fact:n__prod
s :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
prod :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
true :: true:false
activate :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
false :: true:false
p :: n__0:n__s:n__p:n__fact:n__prod → n__0:n__s:n__p:n__fact:n__prod
hole_n__0:n__s:n__p:n__fact:n__prod1_3 :: n__0:n__s:n__p:n__fact:n__prod
hole_true:false2_3 :: true:false
gen_n__0:n__s:n__p:n__fact:n__prod3_3 :: Nat → n__0:n__s:n__p:n__fact:n__prod

Lemmas:
activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3)) → gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3), rt ∈ Ω(1 + n313)

Generator Equations:
gen_n__0:n__s:n__p:n__fact:n__prod3_3(0) ⇔ n__0
gen_n__0:n__s:n__p:n__fact:n__prod3_3(+(x, 1)) ⇔ n__s(gen_n__0:n__s:n__p:n__fact:n__prod3_3(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3)) → gen_n__0:n__s:n__p:n__fact:n__prod3_3(n31_3), rt ∈ Ω(1 + n313)

(20) BOUNDS(n^1, INF)